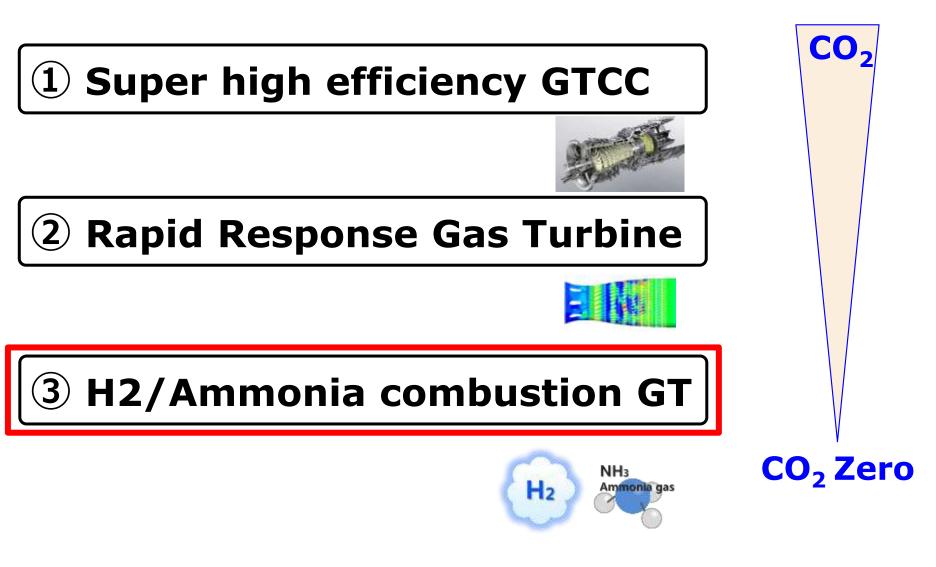


9th International Gas Turbine Conference 10-11 October 2018, Brussels, Belgium

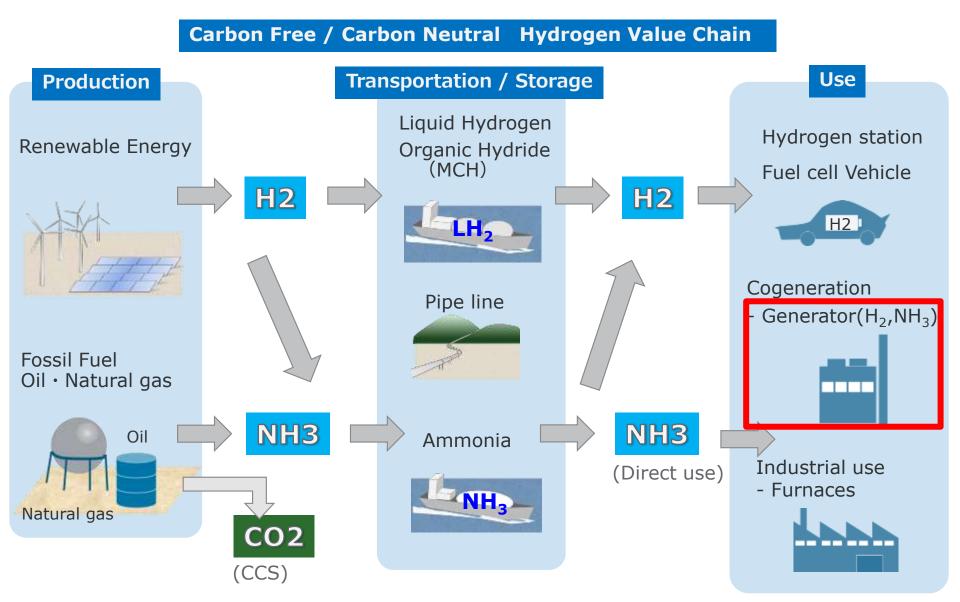
DEVELOPMENT OF HYDROGEN AND NATURAL GAS CO-FIRING GAS TURBINE

<u>Kenji Miyamoto</u>, Kei Inoue, Tomo Kawakami Sosuke Nakamura, Satoshi Tanimura Junichiro Masada

Mitsubishi Hitachi Power Systems, LTD. Mitsubishi Heavy Industries, LTD. Contents


1. Low Carbon Society

2. Hydrogen Firing Combustor Development

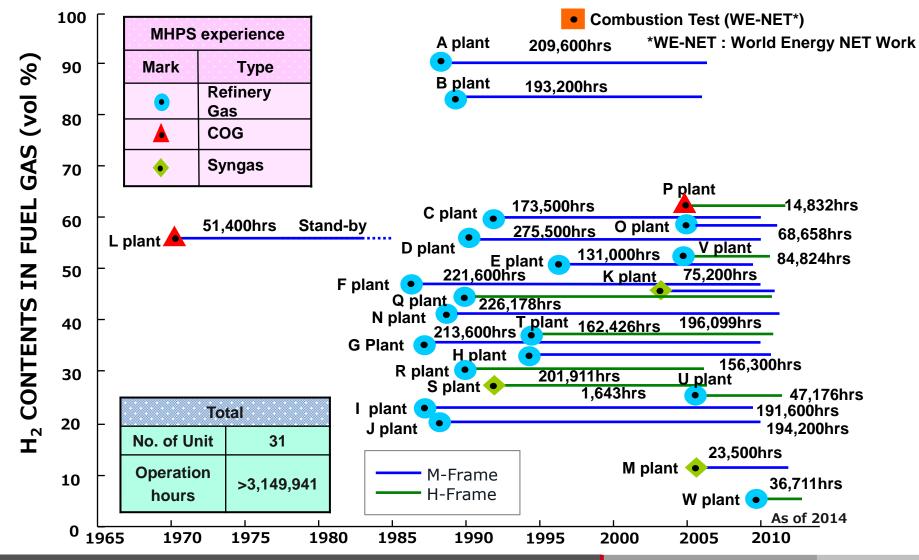

- Diffusion combustor
- Dry Low NOx combustor
- Multi Cluster DLN combustor

3. Summary

1. Low Carbon Society ~Technology Developments for a Low Carbon Society~

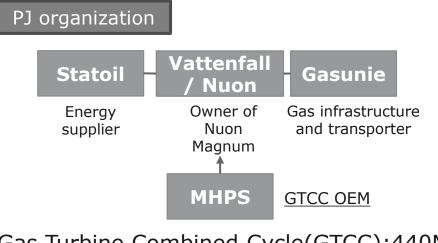
1. Low Carbon Society ~Hydrogen Value Chain~

2. Hydrogen Firing Combustor Development


		-								
Combustor Type		Available H2 ratio	1970 1980 1990		2000	NO 2010 I	1	2030		
Diffusion Water Injection				3	Cogeneration Pla 31Units, >3millon					
		100% H2								
DLN	Multi nozzle	Premix							H2 Co-l (Compl	_
			30vol% H2 (NEDO)		F,	DLN(1 G, J, JA	•		(comp	eteu)
DLN	Multi Cluster	Premix						I	100% firing(2	
Ĩ.			100% H2 (NEDO)				М	ulti Cli	-	

2. Hydrogen Firing Combustor Development

-		-	-	_							
		Available H2 ratio	19	1970 1980 1990		2000	NOW 2010 2020 I		2030		
Diffusion Water Injection			100% H2				ration >3mill			Nuon (2024	_
DLN	Multi nozzle	Premix	30vol% H2 (NEDO)			 F, C	DLN(1 5, J, JA	982) C serie		H2 Co-1 (Compl	
DLN	Multi Cluster	Premix	100% H2 (NEDO)					M	ulti Clu	100% firing(2 uster eries	


2. Hydrogen Firing Combustor Development ~Hydrogen rich fuel operating experiences~

H2 fuel experiences by diffusion combustor in 31units, 3mil hours since 1970's.

2. Hydrogen Firing Combustor Development ~Hydrogen conversion project with diffusion combustor~

MHPS joins in a hydrogen conversion project at Nuon's Magnum power plant in the Netherlands.

Gas Turbine Combined Cycle(GTCC):440MW×3

Vattenfall's gas power plant Magnum. (Photo: Koos Boertjens / Vattenfall)

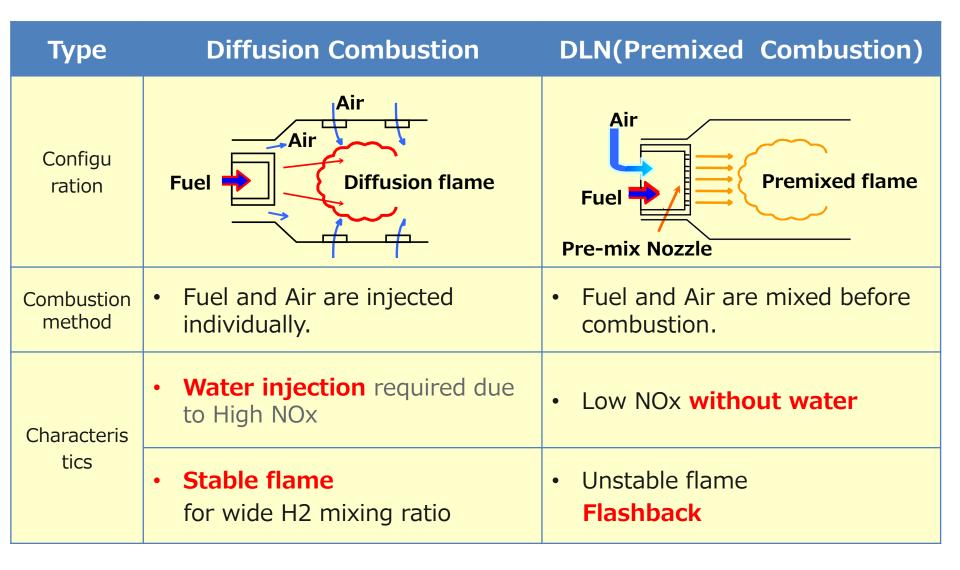
Schedule

~July 2018: Feasibility Study

~2019 Permit approval by the Netherlands Government

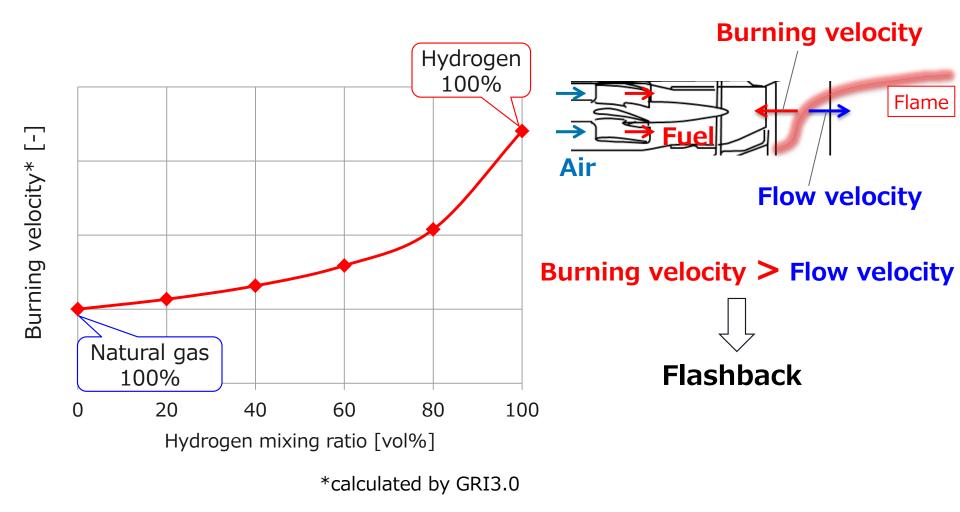
2019~2021 Modification work starts

2024 H2 firing (440MW GTCC)

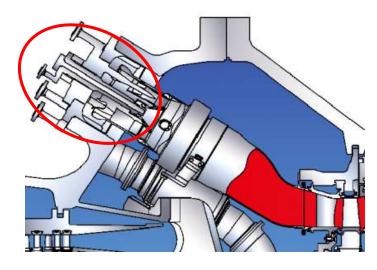

2. Hydrogen Firing Combustor Development

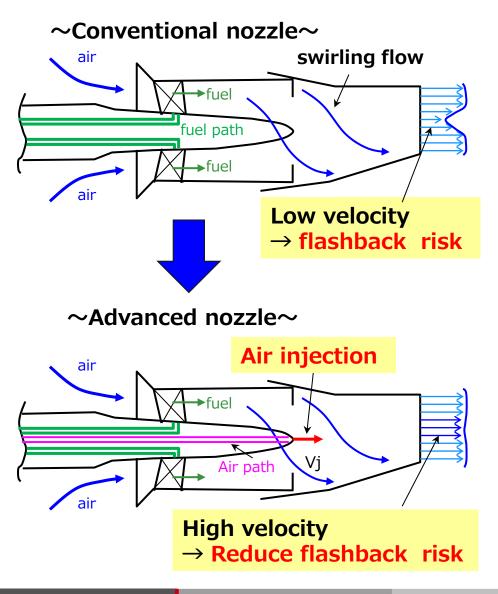
-		-		_							
		Available H2 ratio	197	1970 1980 1990		1990	2000	<u>אס</u> 2010 נ	-	2030	
Diffus	sion	Water Injection	100% H2				ration >3mill	Plant lonHrs		Nuon (2024	
DLN	Multi nozzle	Premix	30vol% H2 (NEDO)			F, G	DLN(1 5, J, JA	982) C serie		H2 Co-f (Compl	
DLN	Multi Cluster	Premix	100% H2 (NEDO)					Μ	ulti Clu	100% firing(2 uster eries	

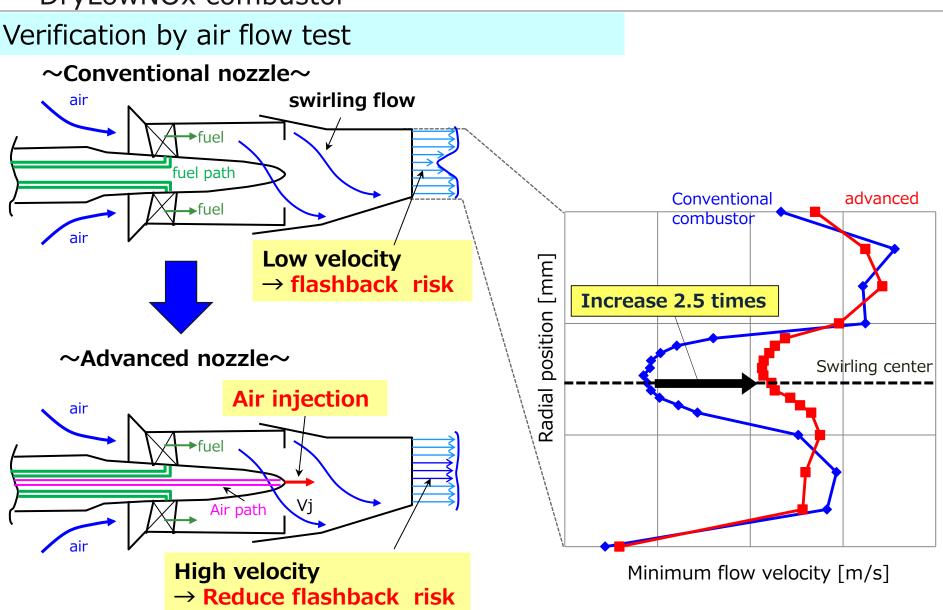
Proprietary and Confidential Information. This document or information cannot be reproduced, transmitted, or disclosed without prior written consent of Mitsubishi Hitachi Power Systems, Ltd.

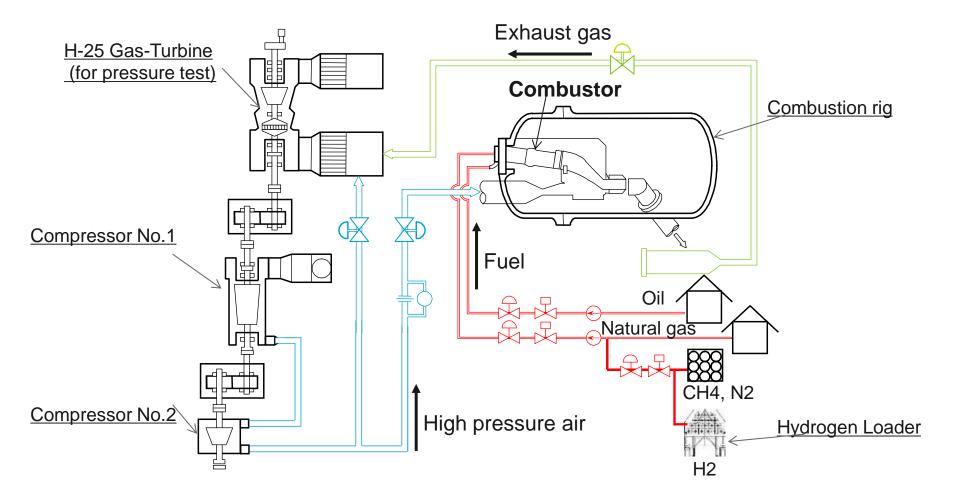

© 2018 Mitsubishi Hitachi Power Systems, Ltd. All Rights Reserve

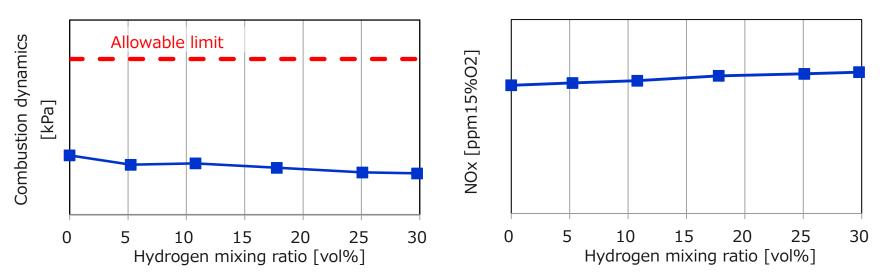
2. Hydrogen Firing Combustor Development ~Comparison of diffusion and premixed combustion~




2. Hydrogen Firing Combustor Development ~Characteristics of Hydrogen Co-firing~

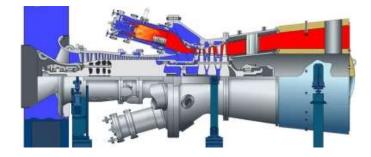

The risk of the flashback due to higher Burning velocity




High pressure combustion rig test facility

Combustion test was successfully carried out **up to 30% without flashback** and combustion dynamics.

<u>Test</u> facility



2. Hydrogen Firing Combustor Development

	-	_							
Combustor Type	Low NOx	Available H2 ratio	1970	0 1980	1990	2000	אסי 2010 ניי	1	2030
Diffusion		3		eration Plant >3millonHrs		Nuoi (202			
		100% H2							
DLN Multi nozzle	Premix						:	H2 Co-f	
		30vol% H2 (NEDO)			DLN(1 G, J, JA	•			
DLN Multi Cluster	Premix							100% firing(2	
		100% H2 (NEDO)				Μ	ulti Clu	· ·	

2. Hydrogen Firing Combustor Development ~Multi Cluster DLN combustor~

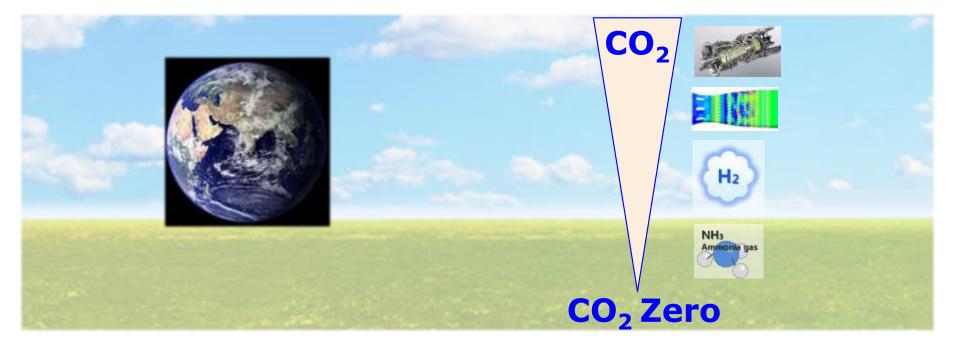
Multi Cluster with H2 mixing fuel experiences in H-series gas turbine.

GT type	H-15
Load	10MW

GT type	H-100
Load	170MW

3. Summary ~Hydrogen Road Map~

				H2 infrastructure								
				Int	roductior	Phase	Mature	e Phase				
Combu Type			Available H2 ratio	2015 I	2020	2025	2030	2035				
Diffusion Water Injection			NOW		Nuon PJ (2024)							
a mon		100% H2			· • (=							
			l		 							
DLN	Multi nozzle	Premix			Co-firing ompleted)							
			30vol% H2		mpieted	• 						
		-	(NEDO)									
DLN	Multi Cluster	Premix		1		, 	100%H2					
		100% H2	l I			firing(203	0)					
			(NEDO)	I I I								


Proprietary and Confidential Information. This document or information cannot be reproduced, transmitted, or disclosed without prior written consent of Mitsubishi Hitachi Power Systems, Ltd.

© 2018 Mitsubishi Hitachi Power Systems, Ltd. All Rights Reserved

MHPS is actively developing new technology on hydrogen fuel for gas turbine.

- MHPS joins in a hydrogen conversion project at the first commercial hydrogen-fired Nuon GTCC.
- Combustion test was successfully carried out 30vol%
 hydrogen co-firing at turbine inlet temperature of 1600℃.
- 3. We are continuously **developing 100% hydrogen firing** using Multi cluster DLN combustor.

Thank You For Your Attention

